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AbehPrr It is shown that the radius measured by triangulation from a chord of a rotating 
system is identical to that obtained by using radar. 

It is well known that the radar measurement of distance in an inertial frame gives an 
identical result to that obtained by laying off angles of sight from two points at a known 
distance apart (triangulation). Triangulation measurement of distance from a baseline 
which is rotating is already inherent in many measurements on the surface of the earth 
and is presumed to agree with radar to a high order of accuracy. It is also the technique 
applied’to determine the distance of the nearer stars (parallax measurement) using the 
baseline provided by the earth’s orbit around the sun. There is, however, no analysis to 
show that triangulation and radar measurements ever agree in rotating systems. This 
short paper derives the equation for the triangulation rotating radius and shows that it is 
identical to the radar rotating radius provided that the baseline has terminals on the 
same ring. It corroborates and strengthens the application of the formula for a rotating 
radius (Jennison 1964, Davies and Jennison 1975). It also gives support to the 
application of instantaneous Lorentz frames at vanishingly small regions in such 
systems (Ashworth and Jennison 1976). 

Consider the rotating system of figure 1. The system is rotating at a constant angular 
velocity, U, about the centre, 0, according to observers in the inertial frame of the 
centre. We specify that the chord, AB, of the circle maintains the same proper length, 
L, irrespective of its velocity, i.e. it behaves as an invariant standard of length in its own 
local frame. When the angular velocity of rotation is zero an observer at A (or B) ‘sees’ 
the centre of rotation at an angle 4( = 90”) with respect to the velocity vector at A (or B). 
The angles OAB and OBA, together with the length L, define the triangle ABO, and 
the radius, r, of the circle is given by A 0  or BO such that r =$(AO+BO). However, 
when the system is rotating with a constant angular velocity about 0 an observer at A 
(or B) ‘sees’ the centre at an angle 4’ with respect to the velocity vector at A (or B). 4’ is 
the aberration angle at A (or B) and the angles O’AB and O‘BA, together with the 
length L, define the triangle AB0 where 0’ is the apparent centre of rotation. Using the 
angles and distances as defined in figure 1 we see that 

JI’ = 180-(8 + E )  = 180- 20 = 1(1. s = p+a, E = 0 - p 
Hence, the locus of 0 is the circumscribed circle to the triangle ABO. 

According to the aberration formula 

and 

cos 4 - v / c  
1 - ( v / c )  cos 4’ cos 4’ = 

1257 



1258 R C Jennison and D G Ashworth 

-\ I 

F i e  1. The aberrated direction to the centre seen from the terminals A and B of a chord of 
a synchronously rotating system. The off-set position of the centre in the diagram is simply a 
result of constructing rectilinear ray paths. Following Jennison (1963, 1964), the ray paths 
may be drawn as circular arcs of radius ;c/o‘ = i(c/o)(l- Y*/c~)”*, whence the centre is 
restored to the symmetrical position whilst the correct aberration angles remain at the ends 
of the chord. 

where U is the velocity of rotation of A and B. Since 4 = 90°, cos +’= - v / c  and 
sin4’=(1-u2/c2)’/2. Hence, since p =9’-90”, 

cos p = (1 - v 2 / c 2 ) l l 2  and sin p = u/c .  (1) 
But: 

L sin E L sin S 
and z = -  

y=- sin @ ’ 
therefore 

(sin a cos p -cos a sin p) L 
y = z z  

and 

(sin /3 cos a +cos p sin a). 
L 

sin 2a 
z=- 

As a result of their observations, therefore, the rotating observers at A and B might 
be expected to conclude that, since z > y, the apparent centre 0’ is nearer to A than to 
B. In this eventuality it is not obvious what should be taken as the radius obtained by 
parallax by the rotating observers. One way of overcoming this difficulty is to consider 
an infinitesimal parallax experiment in which the baseline AB is of length L = 2c. The 
two observers may then use their observations to calculate O C  where Cis the mid-point 
of AB, and then define the parallax radius to be given by r’ = lim,,oO’C. 

From the geometry of figure 1 it is readily shown that 

O C  = c(1- 2 cos 2a cos 28 +~os~2a) l ’~ / s in  2 a  
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whence, from equation (1) and the fact that cos a = a/r and sin a = ( r 2 - a 2 ) ’ ’ 2 / r ,  we 
obtain 

O C  = $[I- 2 ( 2 a 2 / r 2  - 1)(1- 2 u 2 / c 2 )  + ( 2 a 2 / r 2 -  1)~]’/~(1 - a2/r2)-1’2 

thus giving 

r’ = r(1- u ~ / c ~ ) ” ~  

The radius given by equation 2 is the same as that corresponding to radar 
measurements (Jennison 1964, Davies and Jennison 1975, Ashworth and Jennison 
1976). 

An alternative way of overcoming the above difficulty is to assume that the rotating 
observers at A and B realize that the off-set position of the apparent centre, 0’, is simply 
a result of constructing rectilinear ray paths beyond the local Lorentz frames in which 
the angles are measured. If, following Jennison (1963), the ray paths are taken to be 
circular arcs of equal length then the centre is restored to the symmetrical position 
whilst the correct aberration angles remain at the ends of the chord. 0’ in figure 1 is 
simply a ‘virtual’ centre resulting from the diagrammatic extrapolation. If we now, by 
analogy with the static case, define r’ = $(AO’+ BO)  = $(y + z )  to be the radius of the 
rotating system according to observers rotating at an inertial radial distance r from the 
centre, then, 

r’ = U cos p/cos (Y 

giving 

r’ = r(1- u2/c2 ) ’ /* ,  

as before. In this case, since p cannot exceed 90°, y and z must always be positive, 
hence 

a s r(1- u ~ / c ~ ) ” ~ ,  

a s r’. (3) 

i.e. 

This simply means that the length of the baseline must never exceed the diameter 
corresponding to twice the radius measured by the rotating observer and therefore 
follows from the elementary restriction that the terminals of the baseline lie on the same 
ring. 

An interesting result of this analysis is that there may be a limiting size to a 
measuring rod which is spun up to a particular velocity. The effect is most marked for a 
rod which is close to the centre. If, for example, a measuring rod is spun about its own 
centre, equation (3) shows that this limit is reached at zero angular velocity and the rod 
can no longer remain as a valid standard of length. This phenomenon is at the root of 
the Ehrenfest paradox. 

Acknowledgment 

The authors would like to acknowledge helpful comments from a referee. 



1260 R C Jennison and D G Ashworth 

References 

Ashworth D G and Jennison R C 1976 J. Phys. A: Marh. Gen. 9 35-43 
Davies P A and Jennison R C 1975 J. Phys. A: Marh. Gen. 8 1390-7 
Jennison R C 1963 Nature, Lond. 199 7 3 9 4 1  
- 1964 Nahue, Lond. 203 395-6 


